skip to main content


Search for: All records

Creators/Authors contains: "Liu, Zhenxian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hydrated sulfates have been identified and studied in a wide variety of environments on Earth, Mars, and the icy satellites of the solar system. The subsurface presence of hydrous sulfur-bearing phases to any extent necessitates a better understanding of their thermodynamic and elastic properties at pressure. End-member experimental and computational data are lacking and are needed to accurately model hydrous, sulfur-bearing planetary interiors. In this work, high-pressure X-ray diffraction (XRD) and synchrotron Fourier-transform infrared (FTIR) measurements were conducted on szomolnokite (FeSO4·H2O) up to ~83 and 24 GPa, respectively. This study finds a monoclinic-triclinic (C2/c to P1) structural phase transition occurring in szomolnokite between 5.0(1) and 6.6(1) GPa and a previously unknown triclinic-monoclinic (P1 to P21) structural transition occurring between 12.7(3) and 16.8(3) GPa. The high-pressure transition was identified by the appearance of distinct reflections in the XRD patterns that cannot be attributed to a second phase related to the dissociation of the P1 phase, and it is further characterized by increased H2O bonding within the structure. We fit third-order Birch-Murnaghan equations of state for each of the three phases identified in our data and refit published data to compare the elastic parameters of szomolnokite, kieserite (MgSO4·H2O), and blödite (Na2Mg(SO4)2·4H2O). At ambient pressure, szomolnokite is less compressible than blödite and more than kieserite, but by 7 GPa both szomolnokite and kieserite have approximately the same bulk modulus, while blödite’s remains lower than both phases up to 20 GPa. These results indicate the stability of szomolnokite’s high-pressure monoclinic phase and the retention of water within the structure up to pressures found in planetary deep interiors. 
    more » « less
  2. In order to explore how spectral sparsity and vibronic decoherence pathways can be controlled in a model qubit system with atomic clock transitions, we combined diamond anvil cell techniques with synchrotron-based far infrared spectroscopy and first-principles calculations to reveal the vibrational response of Na9[Ho(W5O18)2]·35H2O under compression. Because the hole in the phonon density of states acts to reduce the overlap between the phonons and f manifold excitations in this system, we postulated that pressure might move the HoO4 rocking, bending, and asymmetric stretching modes that couple with the MJ = ±5, ±2, and ±7 levels out of resonance, reducing their interactions and minimizing decoherence processes, while a potentially beneficial strategy for some molecular qubits, pressure slightly hardens the phonons in Na9[Ho(W5O18)2]·35H2O and systematically fills in the transparency window in the phonon response. The net result is that the vibrational spectrum becomes less sparse and the overlap with the various MJ levels of the Ho3+ ion actually increases. These findings suggest that negative pressure, achieved using chemical means or elongational strain, could further open the transparency window in this rare earth-containing spin qubit system, thus paving the way for the use of device surfaces and interface elongational/compressive strains to better manage decoherence pathways. 
    more » « less
  3. Abstract

    The perovskite (BA)4[CuII(CuIInIII)0.5]Cl8(1BA; BA+=butylammonium) allows us to study the high‐pressure structural, optical, and transport properties of a mixed‐valence 2D perovskite. Compressing1BAreduces the onset energy of CuI/IIintervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of1BAincreases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuIIperovskites achieve similar conductivity at ≈50 GPa. The solution‐state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuIIsingle perovskites and CuIInIIIdouble perovskites.

     
    more » « less
  4. Abstract

    The perovskite (BA)4[CuII(CuIInIII)0.5]Cl8(1BA; BA+=butylammonium) allows us to study the high‐pressure structural, optical, and transport properties of a mixed‐valence 2D perovskite. Compressing1BAreduces the onset energy of CuI/IIintervalence charge transfer from 1.2 eV at ambient pressure to 0.2 eV at 21 GPa. The electronic conductivity of1BAincreases by 4 orders of magnitude upon compression to 20 GPa, when the activation energy for conduction decreases to 0.16 eV. In contrast, CuIIperovskites achieve similar conductivity at ≈50 GPa. The solution‐state synthesis of these perovskites is complicated, with more undesirable side products likely from the precursor mixtures containing three different metal ions. To circumvent this problem, we demonstrate an efficient mechanochemical synthesis to expand this family of halide perovskites with complex composition by simply pulverizing together powders of 2D CuIIsingle perovskites and CuIInIIIdouble perovskites.

     
    more » « less
  5. null (Ed.)
    Abstract Constraining the accommodation, distribution, and circulation of hydrogen in the Earth's interior is vital to our broader understanding of the deep Earth due to the significant influence of hydrogen on the material and rheological properties of minerals. Recently, a great deal of attention has been paid to the high-pressure polymorphs of FeOOH (space groups P21nm and Pnnm). These structures potentially form a hydrogen-bearing solid solution with AlOOH and phase H (MgSiO4H2) that may transport water (OH–) deep into the Earth's lower mantle. Additionally, the pyrite-type polymorph (space group Pa3 of FeOOH), and its potential dehydration have been linked to phenomena as diverse as the introduction of hydrogen into the outer core (Nishi et al. 2017), the formation of ultralow-velocity zones (ULVZs) (Liu et al. 2017), and the Great Oxidation Event (Hu et al. 2016). In this study, the high-pressure evolution of FeOOH was re-evaluated up to ~75 GPa using a combination of synchrotron-based X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and optical absorption spectroscopy. Based on these measurements, we report three principal findings: (1) pressure-induced changes in hydrogen bonding (proton disordering or hydrogen bond symmetrization) occur at substantially lower pressures in ε-FeOOH than previously reported and are unlikely to be linked to the high-spin to low-spin transition; (2) ε-FeOOH undergoes a 10% volume collapse coincident with an isostructural Pnnm → Pnnm transition at approximately 45 GPa; and (3) a pressure-induced band gap reduction is observed in FeOOH at pressures consistent with the previously reported spin transition (40 to 50 GPa). 
    more » « less
  6. The Earth’s mantle transition zone (MTZ) is often considered an internal reservoir for water because its major minerals wadsleyite and ringwoodite can store several oceans of structural water. Whether it is a hydrous layer or an empty reservoir is still under debate. Previous studies suggested the MTZ may be saturated with iron metal. Here we show that metallic iron reacts with hydrous wadsleyite under the pressure and temperature conditions of the MTZ to form iron hydride or molecular hydrogen and silicate with less than tens of parts per million (ppm) water, implying that water enrichment is incompatible with iron saturation in the MTZ. With the current estimate of water flux to the MTZ, the iron metal preserved from early Earth could transform a significant fraction of subducted water into reduced hydrogen species, thus limiting the hydration of silicates in the bulk MTZ. Meanwhile, the MTZ would become gradually oxidized and metal depleted. As a result, water-rich region can still exist near modern active slabs where iron metal was consumed by reaction with subducted water. Heterogeneous water distribution resolves the apparent contradiction between the extreme water enrichment indicated by the occurrence of hydrous ringwoodite and ice VII in superdeep diamonds and the relatively low water content in bulk MTZ silicates inferred from electrical conductivity studies. 
    more » « less
  7. null (Ed.)
  8. Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest because of its potential physical properties. However, the successful synthesis of a pristine diamane has up until now not been achieved. We demonstrate the realization of a pristine diamane through diamondization of mechanically exfoliated few-layer graphene via compression. Resistance, optical absorption, and X-ray diffraction measurements reveal that hexagonal diamane (h-diamane) with a bandgap of 2.8 ± 0.3 eV forms by compressing trilayer and thicker graphene to above 20 GPa at room temperature and can be preserved upon decompression to ∼1.0 GPa. Theoretical calculations indicate that a (−2110)-oriented h-diamane is energetically stable and has a lower enthalpy than its few-layer graphene precursor above the transition pressure. Compared to gapless graphene, semiconducting h-diamane offers exciting possibilities for carbon-based electronic devices. 
    more » « less
  9. Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter inH2O-rich setting at high pressures and temperatures (PT) places important limitations on our understanding of this planet type. We have conducted experiments for reactions betweenSiO2andH2O as archetypal materials for rock and ice, respectively, at highPT. We found anomalously expanded volumes of dense silica (up to 4%) recovered from hydrothermal synthesis above ∼24 GPa where theCaCl2-type (Ct) structure appears at lower pressures than in the anhydrous system. Infrared spectroscopy identified strong OH modes from the dense silica samples. Both previous experiments and our density functional theory calculations support up to 0.48 hydrogen atoms per formula unit of (Si1xH4x)O2(x=0.12). At pressures above 60 GPa,H2O further changes the structural behavior of silica, stabilizing a niccolite-type structure, which is unquenchable. From unit-cell volume and phase equilibrium considerations, we infer that the niccolite-type phase may contain H with an amount at least comparable with or higher than that of the Ct phase. Our results suggest that the phases containing both hydrogen and lithophile elements could be the dominant materials in the interiors of water-rich planets. Even for fully layered cases, the large mutual solubility could make the boundary between rock and ice layers fuzzy. Therefore, the physical properties of the new phases that we report here would be important for understanding dynamics, geochemical cycle, and dynamo generation in water-rich planets.

     
    more » « less